ar X iv : 1 51 2 . 07 28 5 v 2 [ m at h . G R ] 2 2 M ay 2 01 7 QUASI - ISOMETRIC EMBEDDINGS OF NON - UNIFORM LATTICES

نویسنده

  • THANG NGUYEN
چکیده

Let G and G be simple Lie groups of equal real rank and real rank at least 2. Let Γ < G and Λ < G be non-uniform lattices. We prove a theorem that often implies that any quasi-isometric embedding of Γ into Λ is at bounded distance from a homomorphism. For example, any quasiisometric embedding of SL(n,Z) into SL(n,Z[i]) is at bounded distance from a homomorphism. We also include a discussion of some cases when this result is not true for what turn out to be purely algebraic reasons.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

ar X iv : m at h / 05 05 24 4 v 1 [ m at h . G T ] 1 2 M ay 2 00 5 WORD HYPERBOLIC EXTENSIONS OF SURFACE GROUPS

Let S be a closed surface of genus g ≥ 2. A finitely generated group Γ S is an extension of the fundamental group π 1 (S) of S if π 1 (S) is a normal subgroup of Γ S. We show that the group Γ S is hyperbolic if and only if the orbit map for the action of the quotient group Γ = Γ S /π 1 (S) on the complex of curves is a quasi-isometric embedding.

متن کامل

ar X iv : 1 70 5 . 03 17 4 v 1 [ m at h . R T ] 9 M ay 2 01 7 PYRAMIDS AND 2 - REPRESENTATIONS

We describe a diagrammatic procedure which lifts strict monoidal actions from additive categories to categories of complexes avoiding any use of direct sums. As an application, we prove that every simple transitive 2-representation of the 2-category of projective bimodules over a finite dimensional algebra is equivalent to a cell 2-representation.

متن کامل

ar X iv : m at h / 01 02 07 7 v 2 [ m at h . A G ] 1 5 Fe b 20 01 REAL RATIONAL SURFACES ARE QUASI - SIMPLE

We show that real rational (over C) surfaces are quasi-simple, i.e., that such a surface is determined up to deformation in the class of real surfaces by the topological type of its real structure.

متن کامل

ar X iv : 0 80 1 . 20 06 v 2 [ m at h . G T ] 3 M ay 2 00 8 GEOMETRY AND RIGIDITY OF MAPPING CLASS GROUPS

We study the large scale geometry of mapping class groups MCG(S), using hyperbolicity properties of curve complexes. We show that any self quasi-isometry of MCG(S) (outside a few sporadic cases) is a bounded distance away from a left-multiplication, and as a consequence obtain quasi-isometric rigidity for MCG(S), namely that groups quasi-isometric to MCG(S) are virtually equal to it. (The latte...

متن کامل

ar X iv : g r - qc / 0 50 51 30 v 1 2 6 M ay 2 00 5 An Exact Solution for Static Scalar Fields Coupled to Gravity in ( 2 + 1 ) - Dimensions

We obtain an exact solution for the Einstein’s equations with cosmological constant coupled to a scalar, static particle in static, ”spherically” symmetric background in 2 + 1 dimensions. ————————————————————————————

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2017